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ABSTRACT

Energy budget estimates of equilibrium climate sensitivity (ECS) and transient climate response (TCR) are

derived based on the best estimates and uncertainty ranges for forcing provided in the IPCC FifthAssessment

Report (AR5). Recent revisions to greenhouse gas forcing and post-1990 ozone and aerosol forcing estimates

are incorporated and the forcing data extended from 2011 to 2016. Reflecting recent evidence against strong

aerosol forcing, its AR5 uncertainty lower bound is increased slightly. Using an 1869–82 base period and a

2007–16 final period, which are well matched for volcanic activity and influence from internal variability,

medians are derived for ECS of 1.50K (5%–95% range: 1.05–2.45K) and for TCR of 1.20K (5%–95% range:

0.9–1.7K). These estimates both have much lower upper bounds than those from a predecessor study using

AR5 data ending in 2011. Using infilled, globally complete temperature data give slightly higher estimates:

a median of 1.66K for ECS (5%–95% range: 1.15–2.7K) and 1.33K for TCR (5%–95% range: 1.0–1.9K).

These ECS estimates reflect climate feedbacks over the historical period, assumed to be time invariant.

Allowing for possible time-varying climate feedbacks increases the median ECS estimate to 1.76K (5%–95%

range: 1.2–3.1K), using infilled temperature data. Possible biases from non–unit forcing efficacy, temperature

estimation issues, and variability in sea surface temperature change patterns are examined and found to be

minor when using globally complete temperature data. These results imply that high ECS and TCR values

derived from a majority of CMIP5 climate models are inconsistent with observed warming during the

historical period.

1. Introduction

There has been considerable scientific investigation of

the magnitude of the warming of Earth’s climate from

changes in atmospheric carbon dioxide (CO2) concen-

tration. Two standard metrics summarize the sensitivity

of global surface temperature to an externally imposed

radiative forcing. Equilibrium climate sensitivity (ECS)

represents the equilibrium change in surface tempera-

ture to a doubling of atmospheric CO2 concentration.

Transient climate response (TCR), a shorter-term

measure over 70 years, represents warming at the time

CO2 concentration has doubled when it is increased by

1% yr21.

For over 30 years, climate scientists have presented a

likely range for ECS that has hardly changed. The ECS

range 1.5–4.5K in 1979 (Charney et al. 1979) is un-

changed in the 2013 Fifth Assessment Report (AR5)

from the IPCC (IPCC 2013). AR5 did not provide a best

estimate value for ECS, stating (in the summary for

policymakers, section D.2) that ‘‘No best estimate for

equilibrium climate sensitivity can now be given because

of a lack of agreement on values across assessed lines of

evidence and studies’’ (p. 16).

At the heart of the difficulty surrounding the values of

ECS andTCR is the substantial difference between values

derived from climate models versus values derived from

changes over the historical instrumental data record using

energy budget models. Themedian ECS given inAR5 for

current generation (CMIP5) atmosphere–ocean global
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climate models (AOGCMs) was 3.2K versus 2.0K for

themedian values from historical-period energy budget–

based studies cited by AR5.

Subsequently Lewis and Curry (2015, hereinafter

LC15) derived, using observationally based energy

budget methodology, a median ECS estimate of 1.6K

from AR5’s global forcing and heat content estimate

time series, which made the discrepancy with ECS

values derived from AOGCMs even larger. LC15 also

derived amedianTCRvalue of 1.3K,well below the 1.8-K

median TCR for CMIP5 models in AR5.

Considerable effort has been expended in attempts to

reconcile the observationally based ECS values with

values determined using climate models. Most of these

efforts have focused on arguments that the methodol-

ogies used in the energy balance model determina-

tions result in ECS and/or TCR estimates that are biased

low (e.g., Marvel et al. 2016; Richardson et al. 2016;

Armour 2017).

Using a standard global energy budget approach, this

paper seeks to clarify the implications for climate sen-

sitivity (both ECS and TCR) of incorporating the most

up-to-date surface temperature, forcing, and ocean heat

content data. Forcing and heat content estimates given

in AR5 are extended from 2011 to 2016, with recent

revisions to greenhouse gas forcing–concentration re-

lationships and post-1990 tropospheric ozone and

aerosol forcing changes applied and a new ocean heat

content dataset incorporated. This paper also addresses

a range of concerns that have been raised regarding

using energy balance models to determine climate sen-

sitivity: variability in patterns of sea surface temperature

change, non–unit forcing efficacy, temperature estima-

tion issues, and time-varying climate feedbacks.

The paper is structured as follows. The global energy

budget approach is discussed in section 2. Section 3 deals

with data sources and uncertainties and section 4 with

choice of base and final periods, and methods are

described in section 5. Section 6 sets out the results,

which are discussed in section 7. Section 8 provides

conclusions.

2. Global energy budget approach

A general energy budget framework has been widely

used in the estimation and analysis of climate sensitivity,

such as byArmour andRoe (2011) andRoe andArmour

(2011), and in AR5 (Bindoff et al. 2014). Estimation of

climate sensitivity from changes in conditions between

periods early and late in the industrial era has been

developed by Gregory et al. (2002), Otto et al. (2013),

Masters (2014), LC15, and other papers. Advantages of

the energy budget approach are described by LC15;

relative to less simple models that use zonally, hemi-

spherically, or land–ocean resolved data, the energy

budget approach includes improved quantification of

and robustness against uncertainties through use only of

global mean data.

Generally, complex models are ill suited to observa-

tionally based climate sensitivity estimation since it

may not be practicable to produce, by perturbing their

internal parameters, a simulated climate system that

is adequately consistent with observed variables. An

increasingly popular alternative is the ‘‘emergent con-

straint’’ approach: identifying observationally constrai-

nable metrics in the current climate that correlate with

ECS in complex models. However, it has been shown for

CMIP5 models that all such metrics are likely only to

constrain shortwave cloud feedback, and not other fac-

tors controlling their ECS (Qu et al. 2018). The ability

in a state-of-the-art complex model to engineer ECS

over a wide range (largely arising from differing short-

wave cloud feedback) by varying the formulation of

convective precipitation, without being able to find a

clear observational constraint that favors one version

over the others (Zhao et al. 2016), casts further doubt on

the emergent constraint approach.

Using a simple rather than a complex climate model

also has the important advantage of transparency and

reproducibility. What determines ECS and TCR in a

complex model is obscure, and their estimation is af-

fected by internal variability. The energy budget

framework provides an extremely simple physically

based climate model that, given the assumptions made,

follows directly from energy conservation. It has only

one uncertain parameter l, which can be directly de-

rived from estimates of changes in historical global

mean surface temperature (hereafter surface tempera-

ture), forcing, and heat uptake rate.

The main assumption made by the energy budget

model concerns the radiative response DR to a change in

radiative forcing DF that alters positively Earth’s net

downward top-of-the-atmosphere (TOA) radiative im-

balance N. The assumption is that, in temporal mean

terms, DR—the change in net outgoing radiation re-

sulting from the change in the state of the climate system

caused by the forcing imposition—is linearly pro-

portional to the forcing-induced change in surface

temperature DT. Mathematically,

DR5lDT1m
R
, (1)

with l (the climate feedback parameter, representing

the increase in net outgoing energy flux per degree of

surface warming) being a constant, and mR being a

random zero-mean residual term representing internal
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fluctuations in the system unrelated to fluctuations in T.

Together mR and fluctuations in R arising through its

relation to T from internal variability in T, which will

have a different signature, represent the internal vari-

ability in R. A constant l implies it is independent of T,

other aspects of the climate state, the magnitude and

composition of DF, and the time since forcing was

applied.

Conservation of energy yields DN 5 DF 2 DR.
Therefore, in temporal mean terms, substituting using

(1) yields

l5 (DF2DN)/DT . (2)

It follows from (2) that, designating the radiative forcing

from a doubling of atmospheric CO2 concentration as

F23CO2
, once equilibrium is restored following such a

doubling (implying DN 5 0), then

l5F
23CO2

/ECS. (3)

Hence, substituting in (2), in general

ECS5F
23CO2

DT

DF2DN
, (4)

with the CO2 forcing component of DF calculated on a

basis consistent with that used for F23CO2
. Here, N is

conventionally regarded and measured as the rate of

planetary heat uptake, which provides identical DN
values to measuring its net downward radiative imbal-

ance. Equation (4) assumes thatDT is entirely externally

forced, but it does not imply a linear relationship be-

tween DN and DT, unlike the ‘‘kappa’’ model (Gregory

and Forster 2008).

We apply (4) to estimateECSbased on changes inmean

values of estimates forT,F, andN betweenwell separated,

fairly long base and final periods. Being inferred from

transient changes, ECS as defined in (4) is an effective

climate sensitivity that embodies the assumption of a

constant linear climate feedback parameter l.Equilibrium

climate sensitivity, by contrast, requires the atmosphere–

ocean system (although not slow components of the cli-

mate system, such as ice sheets) to have equilibrated.

Equilibrium and effective climate sensitivity will not be

identical if the feedback parameter is inconstant over time

or dependent on DF or DT. The behavior of CMIP5

models may provide some insight into these issues.

Throughout 140-yr simulations in which CO2 forcing

is increased smoothly at 1% yr21 (1pctCO2 simulation),

the responses of almost all CMIP5 AOGCMs can be

accurately emulated by convolving the rate of increase

in forcing with the step response in their simulations

in which CO2 concentration is abruptly quadrupled

(abrupt4xCO2 simulation) (Fig. 1; Good et al. 2011;

Caldeira and Myhrvold 2013). Such behavior strongly

FIG. 1. Comparison of actual and step-emulated ensemble-mean changes from pre-

industrial in global surface temperature DT and TOA radiative imbalance DN in 1pctCO2

simulations. Small and large dots show respectively annual and pentadal mean actual values,

blue forDT and green forDN. The red andmagenta lines show respectivelyDT andDN values

as emulated from the step responses of the same models in abrupt4xCO2 simulations. The

nonlogarithmic element of the CO2 forcing–concentration relationship (Byrne and Goldblatt

2014; Etminan et al. 2016) has been allowed for. The same ensemble of 31 CMIP5 models is

used as in Table S2. The minor excess of the emulated DN values in the middle years is

principally due to the behavior of GISS-E2 models; if their physics suite p3 versions are

excluded the match for DN becomes almost perfect throughout, while that for DT remains so.
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suggests that feedback strength in CMIP5 models gen-

erally does not change with DF or DT per se, at least up

to respectively the CO2 forcing from a quadrupling of its

preindustrial concentration and the warming reached in

abrupt4xCO2 simulations after half a century or so

(typically 4–5K). Otherwise one would expect to see

divergences, particularly in the first few decades of the

1pctCO2 simulation when the applicable temperature is

furthest below themean temperature of the abrupt4xCO2-

derived step-emulation components. We have also inves-

tigated feedback strength in the MPI-ESM-1.2 AOGCM

under differing abruptCO2 increases. Feedback strength is

almost the same between abrupt2xCO2 and abrupt4xCO2

simulations up to at least year 150, when DT reaches 5K

under quadrupled CO2.

However, in most CMIP5 AOGCMs, l (here2dN/dT)

tends to decrease a few decades into abrupt4xCO2

simulations—when N is plotted against T (a so-called

Gregory plot), the slope is gentler after that time—

although generally l then remains almost constant for

the rest of the simulation (Armour 2017; see Fig. S1 in

the supplemental material). In some cases, the decrease

in l may be linked to temperature- or time-dependent

energy leakage (Hobbs et al. 2016). However, typically

the decrease in l appears to arise primarily from the

strength of modeled shortwave cloud feedbacks varying

with time, likely linked to evolving patterns of surface

warming (Andrews et al. 2015). The decrease in lmeans

that effective climate sensitivity estimates derived from

simulations forced by abrupt or ramped CO2 changes

tend to increasewith the analysis period, although inmost

cases they change only modestly once a multidecadal

period has elapsed. It is unclear to what extent, if any, this

behavior occurs in the real climate system. Possible im-

plications of time-varying feedbacks for historical period

energy budget ECS estimation are analyzed in section 7f.

Until then, ECS estimates are not distinguished accord-

ing to what extent they are potentially affected by time-

varying feedbacks.

ECS would also differ from the estimate provided by

(4) if that were significantly affected by internal vari-

ability, or if effect on DT or DN of the composite forcing

change over the estimation period differed from that of

CO2 forcing. These issues are discussed in sections 3b,

3c, 4, and 7c. The possibility of internal variability in

spatial surface temperature patterns affecting ECS es-

timation is discussed in section 7a.

TCR is the increase in surface temperature (averaged

over 20 years) at the time of CO2 concentration doubling

when it is increased by 1% yr21, implying an almost

linear forcing ramp over 70 years. Although designed

as a measure of transient response in AOGCMs, TCR

can be regarded as a property of the real climate system.

TCR can be estimated by scaling the ratio of the re-

sponse of global surface temperature to the change in

forcing accruing approximately linearly over a period of

about 70 years (Bindoff et al. 2014, p. 920). That is,

TCR5F
23CO2

DT

DF
. (5)

TCR can be estimated using (5) with a recent final pe-

riod and a base period ending circa 1950. Although oc-

curring mainly over the last 70 years, the effect on

surface temperature of the development of forcing over

the whole historical period (post ;1850) has been esti-

mated to be broadly equivalent to that of a 100-yr linear

forcing ramp (Armour 2017). TCR may therefore also

be estimated using a base period early in the historical

period, with a possiblemarginal upward bias since with a

longer ramp period the climate system will have had

more time to respond to the ramped forcing. LC15

found that estimating TCR using (5) with a recent final

period and a base period either early in the historical

period or of 1930–50 provided an estimate of TCR

closely consistent with its definition.

The energy budget approach has also been applied to

estimate both ECS and TCR using regression over all

or a substantial part of the historical period, rather than

taking differences between base and final periods

(Gregory and Forster 2008; Schwartz 2012). Although

regression makes fuller use of available information than

the two-period method, using averages over base and fi-

nal periods captures much of the available information,

since internal variability is high on subdecadal time scales

and total forcing has only become reasonably large rela-

tive to its uncertainty relatively recently. Moreover,

handling multidecadal internal variability and volcanic

eruptions poses a challenge when using regression.

Gregory and Forster (2008) excluded years with signifi-

cant volcanism, but subsequent years may be affected by

the recovery from volcanic forcing.

It is important to use an appropriate forcingmetric for

energy budget sensitivity estimation. The surface tem-

perature response to forcing from a particular agent

relative to that from CO2 (its ‘‘efficacy’’; Hansen et al.

2005) is in some cases sensitive to the metric used. In

such cases, efficacy is normally much closer to unity

when the effective radiative forcing (ERF) metric

(Sherwood et al. 2015; Myhre et al. 2014) is used rather

than the common stratospherically adjusted radiative

forcing (RF) metric. Unlike ERF, the RF metric does

not allow for the troposphere and land surface adjusting

to the imposed forcing. Since ERF is a construct de-

signed to fit the global radiative response as a linear

function of DT over time scales of decades to a century

(Sherwood et al. 2015), it is an appropriate metric for
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energy budget sensitivity estimation. References here to

forcing are to ERF except where indicated otherwise.

AR5 only gives estimated forcing time series for ERF.

Its best estimates of 2011 ERF differ from those of RF

only for aerosols and contrails, although uncertainty

ranges are generally wider for ERF than for RF.

Uncertainty in energy budget estimates of ECS and

TCR from instrumental observations stems primarily

from uncertainty in DF (LC15), which also produces

most of the asymmetry in probability distributions for

ECS and TCR estimates (Roe and Armour 2011). The

two main contributors to uncertainty in DF are aerosols

and, to a substantially smaller extent, well-mixed

greenhouse gases (WMGG).

3. Data sources and uncertainties

As in LC15, forcing and heat uptake data and un-

certainty estimates identical to those given in AR5 have

been used unless stated otherwise. AR5 estimates rep-

resent carefully considered assessments in which many

climate scientists with relevant expertise were involved,

and underwent an extensive review process. Post-2011

values have insofar as possible been derived entirely

from observational data, on a basis consistent with that

in AR5. Trend-based extrapolation has only been used

for some minor forcing and heat uptake components,

except for 2016 aerosol and tropospheric ozone forcing.

Only a brief discussion of the treatment of data un-

certainties and internal variability is given here, since

full details of our treatment can be found in LC15. This

section summarizes information about the forcing, heat

uptake and temperature data. Full details of changes

relative to AR5 estimates for certain forcing and heat

uptake components, and of the updating of all compo-

nents from 2011 to 2016, are provided in the supple-

mental material (see sections S1 and S2).

a. Forcings

ERF time series medians up to 2011 (relative to 1750)

are sourced from Table AII.1.2 of AR5, with uncertainty

estimates for 2011 derived from Tables 8.6 and 8.SM.5 of

AR5. The only changes to Table AII.1.2 values concern

forcing from the principal WMGG, where recent revisions

to forcing–concentration relationships (Etminan et al.

2016) have been incorporated throughout, and post-1990

changes in aerosol and tropospheric ozone forcing, where

new estimates of their evolution based on updated an-

thropogenic emission data for 1990–2015 (Myhre et al.

2017) have been adopted, adding their estimated post-1990

changes to the AR5 1990 values. Recent evidence con-

cerning volcanic forcing (Andersson et al. 2015) was con-

sidered, but no revision to AR5 estimates was found

necessary (see section S1 in the supplemental material).

The principal effect of these revisions is to make methane

(CH4) forcing more positive, and post-1990 aerosol forcing

less negative, than perAR5.After reaching20.9Wm22 in

1995,ERFAerosol weakens to20.8Wm22 in 2011. The 2011

forcing uncertainty ranges are used, in conjunction with

AR5 2011medians, to specify the fractional uncertainty for

each forcing constituent.

Since AR5, understanding of anthropogenic aerosol

forcing (ERFAerosol) has improved. A number of recent

studies point to total aerosol forcing being substantially

weaker than the lower end of the 2011 range from 21.9

to 20.1Wm22 (median 20.9Wm22) given in AR5, pri-

marily due to negative forcing from aerosol–cloud in-

teractions being weaker than previously thought (Seifert

et al. 2015; Stevens 2015; Gordon et al. 2016; Zhou and

Penner 2017; Nazarenko et al. 2017; Lohmann 2017;

Malavelle et al. 2017; Stevens et al. 2017; Fiedler et al. 2017;

Toll et al. 2017). Recent evidence regarding positive aerosol

forcing from absorbing carbonaceous aerosols (Wang et al.

2014; Samset et al. 2014;Wang et al. 2016;Zhang et al. 2017)

is mixed, on balance suggesting it may be lower than the

AR5best estimate, but above its lower uncertainty bound in

AR5. Although some post-AR5 studies (e.g., Cherian et al.

2014; McCoy et al. 2017) have reported relatively strong

aerosol forcing, Stevens (2015) presented several observa-

tionally based arguments that total aerosol forcing since

preindustrial was weak and could not be stronger

than21.0Wm22.1 Supporting those arguments, Zhou and

Penner (2017) and Sato et al. (2018) showed that negative

cloud-lifetime aerosol forcing simulated by AOGCMs was

unrealistic, Bender et al. (2016) showed that the positive

correlation between aerosol loading and cloud albedo dis-

played in most climate models is not seen in observations,

andNazarenkoet al. (2017) showed that aerosol forcingwas

weaker when climate feedbacks were allowed for. In the

light of these developments, the 21.9Wm22 model-

derived lower bound for 2011 aerosol forcing in AR5

now appears too strong. We have therefore weakened it

slightly to 21.7Wm22, as in Armour (2017), making the

range symmetrical about the AR5 2011 median.

Following LC15, CO2 and other greenhouse gas

(GHG) forcings are combined into a single ERFGHG

time series, since AR5 does not distinguish between the

two as regards ERF uncertainty. Uncertainty in forcing

from WMGG almost entirely relates to how much

forcing a given concentration of each greenhouse gas

1 Substituting, for consistency, the higherWMGGforcing used in

this study for that used in Stevens (2015) would slightly change

its 21.0Wm22 aerosol forcing lower bound, to 21.06Wm22, too

little to weaken the argument for the proposal made here.
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produces—uncertainty in concentrations isminor—and is

likely highly correlated among WMGG. AR5 (section

8.5.1) assumes that fractional ERF uncertainties for CO2

apply to all WMGG and to total WMGG, implying that

fractional uncertainty in F23CO2
is the same as, and fully

correlated with, that in ERFGHG. We follow Otto et al.

(2013) and LC15 in adopting this assumption. Although

uncertainty inWMGG forcing is substantial, since F23CO2

appears in the numerator of (4) and (5) and DF (to which

ERFGHG is by far the largest contributor) in the de-

nominator, the effects on ECS and TCR estimation of

uncertainty in forcing from WMGG cancel out to a sub-

stantial extent. Dropping the assumption of uncertainty

being correlated between CO2 and other GHG forcing

would have a negligible effect on ECS and TCR estimate

uncertainty ranges. The same would apply if in addition

the ERF-to-RF uncertainty ratio for non-CO2 WMGG

were increased from the 20%:10% ratio assumed inAR5

to 30%:10%, even if uncertaintywere treated as perfectly

correlated between all non-CO2 WMGG, as in AR5.

Ozone (both tropospheric and stratospheric), strato-

spheric water vapor (H2O), and land-use (albedo) forc-

ings, for which uncertainty distributions can be added in

quadrature, are combined into a single ERFOWL forcing

component series (termed ERFnonGABC in LC15).

The resulting forcing best estimates and uncertainties

used for the main results are summarized in Table 1, for

both 2011 and 2016. AR5 forcing estimates and un-

certainty ranges for 2011 are also shown. Following

LC15, the uncertainty ranges for solar and volcanic

forcing have been widened. The revised total 1750–2011

anthropogenic forcing estimate has increased by 9%

from the AR5 value; the largest contribution comes

from the revision in CH4 forcing. Also, F23CO2
has been

revised upward 2.5% to 3.80Wm22, which has an

opposing effect on sensitivity estimation to the upward

revision in total forcing. Figure 2 shows the original AR5

and revised anthropogenic forcing time series.

LC15 concluded that volcanic forcing (ERFVolcano) in

AR5 needs to be scaled down by 40%–50% in order to

produce a comparable effect on surface temperature to

ERFGHG and other forcings.Gregory andAndrews (2016)

likewise found that volcanic forcing produced a sub-

stantially smaller response inAOGCMs than CO2 forcing.

They quantified the effect in HadCM3, where ERFVolcano

was smaller relative to stratospheric aerosol optical depth

than perAR5 and its efficacy was also lower, implying that

AR5 volcanic forcing needed to be scaled down by about

50% for use in a global energy budgetmodel. Since there is

no authority inAR5 for applying an adjustment factor, the

issue is sidestepped by using base and final periods with

matchingmean volcanic forcing, as in LC15. The results of

applying a scaling factor of 0.55 are shown where sensi-

tivity testing of estimates to the choice of base and final

periods involvesmismatched volcanic forcing. Likewise, as

inLC15 theAR5 land-use change forcing (ERFLUC) series

is used despite it representing only effects on surface al-

bedo.AR5 assessed that including other effects of land-use

change it is about as likely as not to have caused net

cooling. The effect of setting ERFLUC to zero is also re-

ported. AR5 gives an estimated efficacy range of 2–4 for

the minor black carbon on snow and ice forcing

(ERFBCsnow), which is applied probabilistically.

b. Heat uptake

Planetary heat uptake—the rate of increase in its heat

content—occurs primarily (.90%) in the ocean. The

AR5 estimates for heat uptake by the atmosphere,

ice, land, and deep (sub-2000m) ocean are used unal-

tered up to 2011 and extended to 2016. AR5’s source for

TABLE 1. Components of ERF and treatment of their uncertainties (Wm22). The three italicized rows represent the components for the

row with the total ozone, water vapor, and land use. The row in boldface represents the total of the components from the previous rows.

(CI is confidence interval.)

ERF component

This study 1750–2016

best estimate

Revised 1750–2011

best estimate

AR5 1750–2011 best

estimate and 90% CI

Part treated as

independent

Added fixed

uncertainty 90% CI

WMGG 3.176 2.989 2.831 (2.260–3.400) 0% —

Ozone (total) 0.392 0.379 0.350 (0.141–0.559) — —

Stratospheric water vapor 0.074 0.073 0.073 (0.022–0.124) — —

Land use (albedo) 20.151 20.150 20.150 (20.253 to 20.047) — —

Total ozone, water vapor,

and land use

0.315 0.302 0.273 (0.034–0.512) 50% —

Aerosol (total) 20.769 20.777 20.900 (21.900 to 20.100;

revised to 21.700 to 20.100)

25% —

BC on snow 0.040 0.040 0.040 (0.020–0.090) Ignored —

Contrails 0.059 0.050 0.050 (0.020–0.150) Ignored —

Total anthropogenic forcing 2.821 2.581 2.294 (1.134–3.334) — —

Solar 0.021 0.030 0.030 (20.021 to 10.081) 50% 60.05

Volcanic 20.099 20.125 20.125 (20.160 to 20.090) 50% 60.072
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700–2000-m ocean heat content (OHC), Levitus et al.

(2012), has been updated (NOAA2017), but a new dataset

(Cheng et al. 2017) is also available; the average of those

two datasets is used here. AR5’s source for 0–700-m OHC

has not been updated to 2016. The average of three avail-

able fully updated 0–700-m OHC datasets (Cheng et al.

2017; NOAA 2017; JMA 2017, an update of Ishii and

Kimoto 2009) is used instead, for all years. There are

considerable divergences between OHC estimates from

the various datasets, arising from differences in the data

used, corrections made to it, and the mapping (infilling)

methods used. Averaging results from different OHC da-

tasets reduces the effect of errors particular to individual

datasets. Over the main 1995–2011 and 1987–2011 final

periods used in LC15, implementing the foregoing changes

to the sourcing and calculation of OHC estimates pro-

duces slightly higher 0–2000-m ocean heat uptake (OHU)

estimates than use of the original AR5 datasets. Since the

mid-2000s, when the Argo floating buoy network achieved

near-global coverage, OHC uncertainty has been lower.

The revised estimation basis produces total heat uptake

within 0.02Wm22 of the estimates by Desbruyeres et al.

(2017) of 0.72Wm22 over 2006–14 and by Johnson et al.

(2016) of 0.71Wm22 over 2005–15.

As in previous energy budget studies, AOGCM

simulation-derived estimates of heat uptake are used for

the base periods, since OHC was not measured then.

The heat uptake values used in LC15, which were

derived from simulations by CCSM4 starting in AD 850

(Gregory et al. 2013), scaled by 0.60, were 0.15, 0.10, and

0.20Wm22 respectively for the 1859–82, 1850–1900, and

1930–50 base periods. The unscaled CCSM4-derived

values were consistent with the value derived by

Gregory et al. (2002) from a different AOGCM. The

LC15 values are adopted (taking the 1859–82 value for

1869–82), as are the LC15 standard error estimates,

being in each case 50% of the heat uptake estimate.

The variability in total heat uptake of 0.045Wm22 for

all base and final periods used in LC15, derived from the

ultralong HadCM3 (Gordon et al. 2000) control run, is

also adopted. Investigation showed this to be adequate

for each of the base and final periods used here.

c. Surface temperature

As in LC15, the HadCRUT4 surface temperature

dataset (Morice et al. 2012;Morice 2017) is used, updated

from HadCRUT4v2 to HadCRUT4v5. Results are also

presented using a globally complete version infilled by

kriging (Had4_krig_v2; Cowtan and Way 2014a,c). The

surface temperature trends over 1900–2010 are identical

in both versions, with Had4_krig_v2 warming faster than

HadCRUT4v5 early and late in the record.

Unlike GISTEMP and NCDC Merged Land–Ocean

Surface Temperature (MLOST; now NOAA Global-

Temp), the other two surface temperature datasets cited

in AR5, HadCRUT4 extends back to 1850 rather than

1880, providing adequate data early in the historical

period prior to the period of heavy volcanism from 1883

on. The warming shown by the infilled GISTEMP and

NOAAGlobalTemp version 4.0.1 datasets between 20-yr

periods early and late in their records (1880–99 and 1997–

2016) was respectively 0.85 and 0.82K versus 0.83K for

HadCRUT4v5 and 0.89K for Had4_krig_v2.

Both versions of HadCRUT4 provide an ensemble of

100 temperature realizations that preserves the time-

dependent correlation structure. Uncertainty in mean

surface temperature for each period is calculated on a

basis consistent with the applicable covariance matrix of

observational uncertainty, and combined in quadrature

with an estimate of interperiod internal variability in DT.
The LC15 estimate of 0.08-K standard deviation for such

internal variability is adopted; it was conservatively scaled

up from 0.06K derived from the ultralong HadCM3

control run. Sensitivity testing in LC15 showed that a

further 50% increase in internal variability in DThad al-

most no effect on uncertainty in ECS and TCR estimates.

4. Choice of base and final periods

Two-period energy budget studies have used base and

final periods lasting between one and five decades.

FIG. 2. Anthropogenic forcings from 1750 to 2016. All time series

that are affected by the revisions to AR5 CO2, CH4 and nitrous

oxide forcing–concentration relationships and to post-1990 AR5

aerosol and tropospheric ozone forcing are shown separately. In

some cases the original AR5 1750–2011 time series overlies the

revised 1750–2016 time series prior to 2012. Unrevised anthropo-

genic forcing components [stratospheric H2O, land use (albedo),

BC on snow, and contrails] have been combined into a single

‘‘other anthropogenic’’ time series. Natural forcings (solar and

volcanic) are not shown as they have not been revised and post-

2011 changes in them are very small.
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Longer periods reduce the effects of interannual and

decadal internal variability, but shorter periods make it

feasible to avoid major volcanism and a short final pe-

riod provides a higher signal. Base and final periods

should be at least a decade, to sufficiently reduce the

influence of interannual variability. Volcanic forcing

efficacy, relative toAR5 forcing estimates, appears to be

substantially below unity, and may differ according to

the location and type of eruption. Moreover, prior to the

satellite (post 1978) era there are considerable un-

certainties regarding the magnitude of volcanic eruptions

and resulting forcing. Therefore, accurate sensitivity es-

timation requires estimated volcanic forcing to be

matched between the base and final period, and relatively

low. Likewise, initial and final periods should be well

matched regarding the influence of the principal sources

of interannual and multidecadal internal variability, no-

tably ENSO and Atlantic multidecadal variability.

Atlanticmultidecadal variability is often quantified by

an index of detrended North Atlantic sea surface tem-

peratures, either including (Enfield et al. 2001) or ex-

cluding (van Oldenborgh et al. 2009) the tropics, and

termed the Atlantic multidecadal oscillation (AMO).

The internal multidecadal pattern in near-global sea

surface temperature found by DelSole et al. (2011) is

very similar to Enfield et al.’s AMO index. Enfield

et al. (2001) detrended relative to time, whereas van

Oldenborgh et al. detrended relative to surface tem-

perature. While following van Oldenborgh et al. in ex-

cluding the tropics (which are more affected by ENSO

state than the extratropics), we prefer detrending rela-

tive to total forcing, omitting volcanic years, in order to

exclude any forced signal. Whichever definition is used,

the AMO has had a quasi-periodicity of 60–70 yr during

the instrumental record, peaking around 1875, 1940, and

2005. When using a final period ending in 2016, to

maximize the anthropogenic warming signal, matching

its mean AMO state requires a base period either early

in the historical period or in the midtwentieth century.

Matching the mean ENSO state for the base and final

period is not practical where a base period early in the

record is used, since the mean ENSO state, as repre-

sented by the multivariate ENSO index (MEI; Wolter

and Timlin 1993), was lower then than in recent decades.

However, the MEI depends partly on nondetrended sea

surface temperature (SST) and could include a forced

element, so use of a detrended version is arguably pref-

erable. On that basis, there is no difficulty in matching

mean ENSO state. In any event, of the natural sources of

influence on sensitivity estimation considered, mean

ENSO state appears to be the least influential.

LC15 used base periods of 1859–82, 1930–50, and 1850–

1900. LC15’s preferred base and final periods were

1859–82 and 1995–2011, being the longest periods near

the start and at the end of the instrumental record with

low volcanic activity and with adequately matched AMO

influence. As volcanic activity has remained low since

2011, the obvious choice of updated final period is 1995–

2016. This includes a number of relatively cold years but

also two very strong El Niño events. The decade 2007–16,
which includes a mix of cold and warm years and ends

with a powerful El Niño, is arguably preferable as it

provides a higher DF and the best constrained TCR and

ECS estimates. Moreover, as the Argo network was op-

erational throughout 2007–16, confidence in the re-

liability of OHU estimation is higher.

Although 1859–82 is well matched with both 1995–

2016 and 2007–16 as regards mean volcanic forcing,

and acceptably matched for mean AMO state, Had-

CRUT4v5 observational data sampled a particularly low

proportion of Earth’s surface throughout most of the

1860s, substantially lower than both prior to 1860 and

from 1869 on. During the same period, larger than usual

differences arose between the original HadCRUT4v5

and the globally complete Had4_krig_v2 surface tem-

perature estimates. Infilling through kriging is subject

to greater uncertainty when observations are sparser.

There is merit in using the longer 1850–82 period, ex-

cluding all years with low (under 20% of global area)

HadCRUT4v5 coverage (being 1860–68); however, as

volcanic forcing was strong (below 20.5Wm22) over

1856–58, those years would also need to be excluded to

avoid mismatched volcanic forcing. Since the complete

shorter 1869–82 period produces essentially identical

TCR and ECS estimation we use that instead. It is well

matched with the 1995–2016 and 2007–16 final periods

as regards mean volcanic forcing as well as the AMO

and ENSO state. The better observed 1930–50 period is

also well matched with those final periods, although its

mean AMO state is stronger.

TCR and ECS estimates are also computed using

much longer base and final periods. The 1850–1900 long

base period, taken in AR5 to represent preindustrial

surface temperature, has substantial mean volcanic

forcing. It is matched with 1980–2016, which has almost

identical mean volcanic forcing and acceptably similar

mean AMO and ENSO states.

Figure 3 shows variations in the three sources of nat-

ural variability discussed, along with areal coverage of

HadCRUT4v5. Five-year running means are shown for

the MEI and the AMO index.

5. Methods

The method used to calculate ECS and TCR is iden-

tical to that in LC15, where it is set out in detail. In
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summary, the main steps in deriving best estimates and

uncertainty ranges for ECS and TCR for each base pe-

riod and final period combination are as follows:

1) Unrevised AR5 2011 values for each forcing compo-

nent (ERFGHG, ERFAerosol, ERFBCsnow, ERFContrails,

ERFOWL, ERFSolar, and ERFVolcano) are sampled,

using the original AR5 uncertainty distributions ex-

cept for aerosol forcing. For aerosol forcing a normal

distribution with unchanged 20.9Wm22 median but

the revised 5%–95% uncertainty range from 20.1

to 21.7Wm22 is used. Where appropriate, part of

fractional-type uncertainty in a forcing component

(being all but any fixed element) is treated as in-

dependent between the base and final periods, and the

total uncertainty is split between separate common

and independent random elements before sampling.

The AR5 efficacy range for ERFBCsnow is applied

probabilistically at this stage. After dividing by the

AR5 2011 best estimates, the (one million) samples

are used to scale the periodmeans computed from the

best estimate time series (revised from AR5 where

relevant), samples from the fixed elements of solar

and volcanic forcing uncertainty are added, and the

components are combined, thus deriving sampled

DF values. The central F23CO2
value is scaled in the

same proportion as the central ERFGHG values.

This produces F23CO2
samples with uncertainty re-

alizations (proportionately) matching those for

WMGG forcing.

2) Uncertainty distributions for DT (using the relevant

ensemble of 100 realizations) and forDN are com-

puted, adding in quadrature the estimated uncer-

tainties of the base and final period means and the

estimated internal variability, and random samples

drawn from those distributions.

3) For each sample realization of DT, DF, DN, and

F23CO2
, the ECS and TCR values given by (4) and (5)

are calculated. Histograms of the sample ECS and

TCR values are then computed to provide median

estimates, uncertainty ranges, and probability densi-

ties, treating samples where the denominator is

negative as having infinitely positive sensitivities.

The estimates of DT, DF, and DN, as well as their

uncertainty ranges, are given in Table 2, with the rele-

vant corresponding values from LC15 shown for

comparison.

6. Results

ECS and TCR estimates based on each of the four

combinations of base period and final period are pre-

sented in Table 3. The ECS estimates in this section

assume that the climate feedback parameter over the

historical period, which they reflect, is a constant. That

is, they measure effective climate sensitivity but assume

it equals equilibrium climate sensitivity; the possible

implications of relaxing this assumption are discussed

in section 7f. The relevant results from LC15 are shown

FIG. 3. Natural factors that influence selection of base and final periods, and surface

temperature dataset coverage, during 1850–2016. Volcanic forcing is from AR5. The AMO

index comprises the residuals from regressing HadSST3 data within 258–608N, 58–708W on

total forcing with years in which volcanic forcing is,20.5Wm22 omitted, and is scaled up by

3 times. TheMEI has been extended before 1950 using a regression fit to theMEI.ext (Wolter

and Timlin 2011) and then detrended (relative to time). The two indices are plotted as 5-yr

centered means (3- and 1-yr means for next-but-end and end years, respectively); their units

are arbitrary. Annual means of HadCRUT4v5 monthly grid cell coverage as a fraction of

Earth’s surface are shown. The preferred base and final periods are shaded.
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for comparison. Estimates based on both original

HadCRUT4v5 surface temperature data and on the

globally complete Had4_krig_v2 version are given.

Probability density functions (PDFs) for these ECS and

TCR estimates are presented in Fig. 4.

For each source of surface temperature data, the four

best (median) estimates agree closely for both ECS and

TCR. Based on HadCRUT4v5 data, the best estimates

are in the range of 1.50–1.56K for ECS and 1.20–1.23K

for TCR. Based on globally complete Had4_krig_v2

data, which show greater warming, the best estimates

are in the range of 1.65–1.69K for ECS and 1.27–1.33K

for TCR. Lower (5%) uncertainty bounds for ECS and

TCR vary little between the four period combinations.

Use of 1869–82 as the base period and 2007–16 as the

final period provides the best-constrained, preferred,

estimates, with 95% bounds for ECS and TCR of 2.45K

and 1.7K respectively using HadCRUT4v5 (2.7 and

1.9K using Had4_krig_v2); the corresponding median

estimates are 1.50 and 1.20K (Had4_krig_v2: 1.66 and

1.33K). The new ECS and TCRmedian estimates based

on HadCRUT4v5 are approximately 10% lower than

those in LC15, largely due to the positive revisions to

estimated CH4 and post-1990 aerosol forcing, partly

offset by the higher estimated F23CO2
and (for ECS) by

estimated heat uptake in the final period being a slightly

higher fraction of forcing.

Results of some sensitivity analyses are shown in

Table 4, with various aspects of the 1869–82 base period,

2007–16 final period case beingmodified. These analyses

do not systematically explore all possible variations in

choice of data, uncertainty assumptions, or methodol-

ogy. For clarity, only values based on HadCRUT4v5

surface temperature data are shown; fractional sensi-

tivities are similar using Had4_krig_v2 data.

Using 1850–82 as the base period, with low observa-

tional coverage and volcanic years excluded, produces

virtually identical ECS and TCR medians and un-

certainty ranges to using 1869–82. Generally, estimates

of ECS and TCR are modestly sensitive to selection of

base period if no allowance is made for volcanic forcing

(as estimated in AR5) having a low efficacy; when its

efficacy is taken as 0.55 the ECS and TCR best estimates

are little changed upon substituting 1850–1900 or 1850–

82 (all years) as the base period. Moreover, applying a

volcanic forcing efficacy of 0.55 when regressing surface

TABLE 2. Best estimates (medians) and 5%–95%uncertainty ranges for changesDT in globalmean surface temperature,DF in ERF and

DN in total heat uptake between the base and final periods indicated. The final two lines show comparative values for LC15 for the first two

period combinations given in that paper. The values for DF are after probabilistically applying the AR5 efficacy range for ERFBCsnow.

Base period Final period DT HadCRUT4 (K) DT Had4_krig_v2 (K) DF (Wm22) DN (Wm22)

1869–82 2007–16 0.80 (0.65–0.95) 0.88 (0.73–1.03) 2.52 (1.68–3.36) 0.50 (0.25–0.75)

1869–82 1995–2016 0.73 (0.58–0.87) 0.79 (0.63–0.94) 2.26 (1.44–3.09) 0.49 (0.29–0.69)

1850–1900 1980–2016 0.65 (0.51–0.79) 0.71 (0.56–0.86) 2.01 (1.21–2.82) 0.40 (0.21–0.60)

1930–50 2007–16 0.61 (0.47–0.75) 0.65 (0.51–0.79) 1.94 (1.22–2.66) 0.45 (0.18–0.72)

LC15 estimates for comparison

1859–82 1995–2011 0.71 (0.56–0.86) — 1.98 (0.99–2.86) 0.36 (0.15–0.58)

1850–1900 1987–2011 0.66 (0.52–0.81) — 1.88 (0.92–2.74) 0.41 (0.19–0.63)

TABLE 3. Best estimates (medians) and uncertainty ranges for ECS andTCRusing the base and final periods indicated. Values in roman

type computeDT using theHadCRUT4v5 dataset; values in italics computeDT using the infilled, globally completeHad4_krig_v2 dataset.

The preferred estimates are shown in boldface. Ranges are stated to the nearest 0.05K. The final two lines show the comparable results

from LC15 for the first two period combinations given in that paper. All these ECS estimates assume that the climate feedback parameter

is a constant.

Base period Final period

ECS best

estimate (K)

ECS 17%–83%

range (K)

ECS 5%–95%

range (K)

TCR best

estimate (K)

TCR 17%–83%

range (K)

TCR 5%–95%

range (K)

1869–82 2007–16 1.50 1.2–1.95 1.05–2.45 1.20 1.0–1.45 0.9–1.7

1.66 1.35–2.15 1.15–2.7 1.33 1.1–1.6 1.0–1.9

1869–82 1995–2016 1.56 1.2–2.1 1.05–2.75 1.22 1.0–1.5 0.85–1.85

1.69 1.35–2.25 1.15–3.0 1.32 1.1–1.65 0.95–2.0

1850–1900 1980–2016 1.54 1.2–2.15 1.0–2.95 1.23 1.0–1.6 0.85–1.95

1.67 1.3–2.3 1.1–3.2 1.33 1.05–1.7 0.9–2.15

1930–50 2007–16 1.56 1.2–2.15 1.0–3.0 1.20 0.95–1.5 0.85–1.85

1.65 1.25–2.3 1.05–3.15 1.27 1.05–1.6 0.9–1.95

LC15 results for comparison

1859–82 1995–2011 1.64 1.25–2.45 1.05–4.05 1.33 1.05–1.8 0.9–2.5

1850–1900 1987–2011 1.67 1.25–2.6 1.0–4.75 1.31 1.0–1.8 0.85–2.55
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temperature per HadCRUT4v5 on (efficacy adjusted)

forcing over all years from 1850 to 2016 produces a TCR

estimate of 1.19K, almost identical to the two-period

estimate. By comparison, doing so using unit volcanic

efficacy gives a much lower TCR value of 0.98K.

The residuals from regressing surface temperature per

HadCRUT4v5 on efficacy-adjusted forcing over 1850–

2016 with volcanic efficacy set at 0.55 have a mean over

2007–16 only 0.01K higher than that over 1869–82

(0.03K higher using Had4_krig_v2 data). For the 1995–

2016 final period the corresponding excesses are similar.

The tiny magnitudes of these interperiod differences

indicate that both final periods are well matched with

the 1869–82 base period as regards internal variability.

Reverting the aerosol forcing 5% uncertainty bound

back from 21.7Wm22 to the original AR5 level

of 21.9Wm22 increases the 95% bounds for ECS

and TCR by respectively 0.2 and 0.1K; their median

estimates barely change. Scaling up by 50% the un-

certainty range for ERFWMGG increases those bounds

by 0.15 and 0.05K respectively, while doing so for

ERFOWL increases them by 0.1 and 0.05K respectively;

FIG. 4. Estimated probability density functions for ECS and TCR using each period combination shown in the main results. Original

GMST refers to use of the HadCRUT4v5 record; infilled GMST refers to use of the Had4_krig_v2 record. Box-and-whisker plots show

probability percentiles, accounting for probability beyond the range plotted: 5%–95% (bars at line ends), 17%–83% (box ends), and 50%

(bar inside box: median).

TABLE 4. Sensitivity of best estimates (medians) and uncertainty ranges for ECS and TCR. Ranges are stated to the nearest 0.05K.

Variation from 1869–82 base period, 2007–16 final period,

main results for the HadCRUT4v5 case

ECS best

estimate (K)

ECS 5%–95%

range (K)

TCR best

estimate (K)

TCR 5%–95%

range (K)

Base case: no variations. 1.50 1.05–2.45 1.20 0.9–1.7

Base period 1850–82,a omitting low cover and volcanic years.b 1.50 1.05–2.45 1.20 0.9–1.7

Base period 1850–1900; volcanic efficacy 1.0. 1.44 1.05–2.15 1.16 0.9–1.6

Base period 1850–1900; volcanic efficacy 0.55. 1.52 1.1–2.35 1.21 0.9–1.65

Base period 1850–82a; volcanic efficacy 0.55. 1.52 1.1–2.4 1.22 0.9–1.7

ERFAerosol uncertainty range 5% bound as per AR5. 1.51 1.05–2.65 1.21 0.9–1.8

ERFWMGG uncertainty range scaled up by 50%. 1.50 1.05–2.6 1.20 0.9–1.75

ERFOWL uncertainty range scaled up by 50%. 1.50 1.05–2.55 1.20 0.85–1.75

ERFAerosol uncertainty range scaled down by 50%. 1.50 1.1–2.15 1.20 0.95–1.55

AR5 original ERFGHG and .1990 aerosol and O3 forcing.
c 1.68 1.1–3.25 1.31 0.9–2.05

0–2000-m OHC based only on Cheng et al. (2017) data. 1.47 1.05–2.35 — —

0–2000-m OHC based only on NOAA (2017) data. 1.54 1.05–2.55 — —

ERFLUC set to zero (increases DF by 0.10Wm22). 1.43 1.0–2.25 1.16 0.85–1.6

a Heat uptake for the 1850–82 base period is set midway between those for the 1850–1900 and 1869–82 periods, or equal to the latter when

low coverage and volcanic years are excluded.
b The criteria for excluding years from the 1850–82 base period as a result of low coverage or volcanism are HadCRUT4v5 areal coverage

,0.2 or ERFVolcano , 20.5Wm22.
c AR5 original (unrevised) post-2011 tropospheric ozone and aerosol forcing are derived by extrapolation using their small 2002–

11 trends.
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scaling down these uncertainty ranges by 50% has ap-

proximately equal but opposite effects. Reducing the

aerosol forcing uncertainty range by 50% reduces the

95% bound for ECS by 0.3K, to 2.15K, and that for

TCR by 0.15K, to 1.55K.

Using unrevised AR5 forcing–concentration re-

lationship estimates for the principal WMGG and for

post-1990 aerosol and tropospheric ozone forcing re-

sulted in the ECS and TCR median values increasing by

0.18 and 0.11K respectively. The 95% uncertainty

bounds for ECS and TCR increase more, by 0.8 and

0.35K respectively, but remain well below their levels in

LC15. In contrast, computing 0–2000-m OHU using only

Cheng et al. (2017) or only NOAA (2017) data instead of

using estimates averaged over those datasets [and, for the

0–700-m layer, the JMA (2017) dataset], affects ECS best

estimates by merely 62%–3%, with the 95% bound al-

tering by 60.1K; TCR estimates are unaffected.

7. Discussion

Since publication of LC15, various papers have

claimed that the energy budget approach and/or tem-

perature dataset used in LC15 do not enable ECS and

TCR to be determined satisfactorily from historical

observations, and lead to the LC15 estimates being bi-

ased low. Here we address these critiques, as well as

implications of feedback analysis and research con-

cerning SST warming patterns.

a. Role of historical sea surface temperature warming
patterns

The pattern of observed surface warming over the

historical period differs from that simulated by most

CMIP5 models. Gregory and Andrews (2016, hereinaf-

ter GA16) found that feedback strength l in simulations

by two atmosphere-onlymodels (AGCMs),HadGEM2-A

and HadCM3-A, driven by observed evolving changes in

SST and sea ice, but with preindustrial atmospheric com-

position and other forcings fixed (amipPiForcing simu-

lation), was considerably higher over the historical

period than in years 1–20 of abrupt4xCO2 simula-

tions.Moreover, l showed substantial decadal variation,

being particularly large over the post-1978 period. Zhou

et al. (2016) found broadly similar behavior in two

other AGCMs.

We focus here on GA16’s amipPiForcing simulation

data from the more advanced, current generation

HadGEM2 model. GA16’s analysis of variation in l

(their ~a) measured by regression over a 30-yr sliding

window, with small temperature changes except to-

ward the end, is not relevant to energy budget esti-

mation spanning much longer periods and larger

changes. Moreover, GA16’s analysis method produces

large variability in l estimates when tested on pseu-

dodata embodying a constant l (Fig. S2 in the sup-

plemental material).

Plotting DR against DT using pentadal means,

averaging-out interannual noise, and considering how

averages over consecutive longer periods compare

(Fig. 5a) provides a more suitable assessment of the

stability of feedback strength in HadGEM2-A over the

historical period. Over the last 75 years, during which

over 80% of the total forcing change occurred, DR and

DT pentadal anomalies are clustered around the best-fit

line, with means for all five 15-yr subperiods lying very

close to it. There are a few pentadal points some distance

from the best-fit line, as one would expect from internal

variability, but little evidence of fluctuating multi-

decadal feedback strength. The largest excursions of DR
from the best-fit l estimate of 1.90Wm22K21 were in

the 20 years prior to 1925 and in the decade centered on

1980 (Fig. S3 in the supplemental material).2 The latter

was responsible for the strong 1970–95 upward trend in

30-yr regression-based l in GA16’s Fig. 2a; if the 1976–

85 DR values are suitably adjusted, the trend is flat from

1960 on (Fig. S4 in the supplemental material). How-

ever, the anomalous DR values circa 1980 have only a

minor effect on l estimates derived from 15-yr means:

for both 1966–80 and 1981–95, DR/DT was only 7%

lower than for 1996–2010. The early heavy volcanism

(during 1883–1905) appears not to have affected the

best-fit l: the ratio of changes inR andT between 1931–60

and 1996–10, two volcanism-free periods, gives almost the

same value. Fits for each individual amipPiForcing run

are very similar (negligible y intercept, slopes within 5%

of the 1.90Wm22K21 for the ensemble mean, R2 5 0.93

vs 0.94 for the ensemble mean, in all cases with 1906–25

data excluded). This analysis shows that HadGEM2-A

displays a near-constant l of 1.9Wm22K21 over the

historical period when driven by observed evolving SST

patterns—over 2.3 times as high as the 0.82Wm22K21

over years 1–20 of HadGEM2-ES’s abrupt4xCO2 simu-

lation, and corresponding to an effective climate sensi-

tivity of only 1.67K.3

GA16 offered three possible explanations for feed-

back strength being higher over the historical period in

2 The first excursion is cotemporaneous with a period of strongly

negative SST anomalies in the North Atlantic and reconstructed

salinity anomalies in the Labrador Sea (Müller et al. 2015). The

second excursion is cotemporaneous with decadal variability

linked to the 1976 Pacific climate shift (Trenberth and Hurrell

1994). Both events likely arose from multidecadal internal vari-

ability; there is little evidence of either being forced.
3 Based on our estimated F23CO2

for HadGEM2-ES of 3.18Wm22.
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their amipPiForcing experiments than over years 1–20

of the abrupt4xCO2 simulations. They found two of

them conflicted with their calculated trends in l,

leading them to favor the importance of the third ex-

planation, namely that unforced variability strongly

influenced historical variations in SST patterns. How-

ever, Zhou et al. (2016) found that if CMIP5 control

simulations realistically estimate internal variability

on decadal time scales, then at least part of the 1980–

2005 SST trend patternmust be forced. In HadGEM2’s

case, under 1% of internal variability realizations

simulated by CMIP5 AOGCMs would raise the DR
value for the final 15 years of the amipPiForcing run

implied by the l value HadGEM2-ES exhibits early in

its abrupt4xCO2 simulation even 30% toward its ac-

tual amipPiForcing value (Fig. S5 in the supplemental

material). Our finding that the relationship between

pentadal DR and DT in HadGEM2-A during its

amipPiForcing experiment is stable, apart from two

excursions, (Figs. 5a and S3), strongly points to the

observed SST pattern evolution being largely forced

and to much lower l values in years 1–20 of

HadGEM2-ES’s abrupt4xCO2 experiment reflecting

unrealistic simulated SST pattern evolution. It follows

that there is no reason to believe that energy budget

sensitivity estimates based on changes over the full

historical period are biased downward by internal

variability in SST patterns.

Observational estimates of the relationship be-

tween DR and DT throughout the historical period are

also relevant. We estimate l using all 15-yr periods in

1927–2016, as well as by regression over 1872–2016,

anomalizing relative to the 1850–84 base period. Av-

erage volcanism in 1850–84 matches that over both

1927–2016 and 1872–2016, and when using 2007–16

anomalies that base period gives the same l estimate

(2.29Wm22 K21, corresponding to an ECS of 1.66K)

as per the main 2007–16 based results with globally

complete DT. Until recent decades DR was un-

observed; we approximate it by scaling DF pro rata to

the observationally estimated the ratio DR:DF for

1869–82 to 2007–16, assuming that DN is proportional

to DT over the historical period (Gregory and Forster

2008). We scale ERFVolcano by 0.55 to adjust for its

low efficacy. Our no-intercept pentadal regression fit

over 1872–2016 gives l 5 2.27Wm22 K21. Post-1926

(DR, DT) pentadal means (Fig. 5b) cluster around the

best-fit line, while most of the 15-yr means lie almost

on it.

The considerable stability of observationally based

l estimates over 1927–2016 provides further evidence

that feedback strength did not fluctuate materially

FIG. 5. Change in net outgoing radiation DR plotted against change in surface temperature DT. Blue and cyan

dots show pentadal means, and red-filled squares show 15-yr means. (a) Average anomalies, relative to the 1871–

1900 mean, from two 1871–2010 amipPiForcing simulations by HadGEM2-A. The black line shows the linear fit

with pentads spanning 1906–1925 (cyan dots) excluded (see Fig. S2). No-intercept fitting with all pentads included

yields an almost identical fit. Plotted 15-yr means are for periods ending 1950, 1965, 1980, 1995, and 2010.

(b) Observationally estimated anomalies over 1872–2016 relative to the 1850–84 mean. Forcing is as in section 3a,

with an efficacy of 0.55 applied to ERFVolcano. The value ofDR is estimated as (2.522 0.50)/2.523DF; this scaling is
based on the DF and DN values from the first row of Table 2. Had4_krig_v2 is used for DT. The black line shows the

no-intercept linear fit to all pentadal values. Fitting with an intercept, but excluding pentads spanning 1907–26, gives

a 1% lower best-fit slope. Plotted 15-yr means are for periods ending 1941, 1956, 1971, 1986, 2001, and 2016. Pre-

1927 pentads are colored cyan.
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during the historical period, and strengthens confidence

in our main results.

b. Weaknesses in the feedback analysis constraint

It has been argued that relatively well understood

feedbacks (water vapor/lapse rate and albedo) imply, in

the absence of evidence for cloud feedbacks being sig-

nificantly negative, an upper bound on the climate

feedback parameter corresponding to ECS being 2K or

higher, particularly if anvil cloud–height feedback is also

included. However, an analysis of feedbacks and forcing

in CMIP5 models (Caldwell et al. 2016) indicates that if

diagnosed cloud feedbacks are excluded, the median

implied ECS reduces from 3.4 to 2.3K, with ECS falling

below 2K in a quarter of the models. More fundamen-

tally, the fact that AGCMs can generate widely varying

climate feedback strength depending on the pattern of

SST change (which feedback analysis does not con-

strain) weakens the feedbacks constraint argument.

A substantial part of the initial radiative response to

CO2 forcing may be viewed (and mathematically mod-

eled) as reflecting a subdecadal time scale ocean ad-

justment process during which ocean heat transport

and SST patterns alter, negatively affecting shortwave

cloud radiative effect (Andrews et al. 2015) so that R

increases for a given T, thus partially counteracting the

forcing independently of surface temperature increase

(Williams et al. 2008; Sherwood et al. 2015; Rugenstein

et al. 2016). Feedback analysis derived constraints, even

if correct, do not apply to such an adjustment. Accord-

ingly, as during the initial decade or two the radiative

response partly reflects adjustments, the apparent cli-

mate feedback parameter may be considerably higher

than feedback analysis suggests is possible. While the

(lower) underlying climate feedback parameter is not

affected by adjustments, and may be time invariant,

ECS is affected.

In abrupt4xCO2 simulations, where diagnosed climate

feedback strength is typically substantially greater in the

first decade or two than subsequently, eigenmode de-

composition of CMIP5AOGCMresponses (Proistosescu

and Huybers 2017) indicates that only about one-third of

the initial forcing remains once subdecadal time scale

responses are complete, and that the climate feedback

parameter associated with subdecadal time scale re-

sponses, if not regarded as partially associated with ad-

justment processes, ranges up to 3Wm22K21.

We conclude that simple global feedback analysis

cannot rule out low ECS even if global cloud feedback is

ultimately positive, because radiative response, forcing

adjustments and feedbacks depend on the pattern of

SST warming, which may differ significantly from that

simulated by AOGCMs.

c. ERF efficacy

There have been suggestions that the composite forc-

ing during the historical period has an overall ERF efficacy

below one, so that historical forcing will have produced

less warming than CO2 forcing of equal ERF magnitude

(Shindell 2014; Kummer and Dessler 2014; Marvel et al.

2016). In most cases, the shortfall is attributed principally

to spatially inhomogeneous negative aerosol forcing

having an efficacy exceeding one. Using historical all-

forcings, WMGG-only, and natural forcings–only simu-

lations by a small ensemble of CMIP5 models, Shindell

estimated that aerosol ERF—combined with the much

smaller ozone ERF—had an efficacy of 1.5, resulting in

the (transient) efficacy of historical ERF being approxi-

mately 0.85. Kummer and Dessler showed that applying

Shindell’s aerosol and ozone ERF efficacy estimate in-

creased their ECS estimate by 50%.

Marvel et al. (2016) using the GISS-E2-Rmodel and a

set of single-forcing simulation ensembles as well as a

historical all-forcings simulation ensemble, with the

applicable ERF determined from a further set of simu-

lation ensembles, estimated historical composite ERF to

have transient and equilibrium efficacies below one; we

discuss these findings below. However, they found that

these shortfalls were due to solar, volcanic, ozone, and

(for equilibrium efficacy) WMGG ERF having an effi-

cacy below one, with aerosol ERF having an efficacy of

1.0. Other single forcing simulation studies also indicate

that aerosol ERF does not have an efficacy exceeding

one (Hansen et al. 2005; Ocko et al. 2014; Paynter and

Frölicher 2015; Forster 2016). Although Rotstayn et al.

(2015) obtained an aerosol ERF efficacy estimate of 1.4

by regressing surface temperature change over the his-

torical period against estimated aerosol ERF in an

ensemble of CMIP5 models, their result is strongly

model-ensemble dependent. Excluding an outlier model

(FGOALS-s2) makes their efficacy estimate statistically

indistinguishable from one.

Complicating matters, for aerosols the forcing and

response may vary significantly with climate state

(Miller et al. 2014; Nazarenko et al. 2017). Shindell

(2014) [and thereby Kummer and Dessler (2014)] and

Marvel et al. (2016) estimated aerosol ERF using model

simulations in which the climate state differed from that

when composite historical forcing was applied, so their

results are unreliable in the presence of aerosol forcing

or response climate-state dependency. As Shindell dif-

ferenced results from forced simulations involving dif-

ferent climate states and forcing combinations, his

findings (and thereby Kummer and Dessler’s) are par-

ticularly susceptible to bias from aerosol forcing or re-

sponse climate-state dependency.
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Efficacy estimates based purely on composite histor-

ical forcing may be more reliable. Marvel et al. (2016)

estimated the efficacy (their transient efficacy) of com-

posite historical instantaneous radiative forcing at the

tropopause (iRF, an approximation to RF) as 1.00. Al-

though their corresponding ERF (transient) efficacy

estimate, which is more relevant to energy-budget

studies, was 0.88, they derived it by comparing year-

2000 forcing with mean 1996–2005 temperatures, which

does not produce a satisfactory estimate. In GISS-E2-R,

year 2000 forcing was higher than the 1996–2005 mean,

and surface temperature in the second half of the 1990s

was still depressed by recovery from the Pinatubo

eruption (Table S1 in the supplemental material). Re-

calculating efficacy using warming over 2000–05, scaling

year-2000 historical ERF by the ratio of average 2000–

05 iRF to year-2000 iRF, raises the Marvel et al. (tran-

sient) efficacy of historical ERF to 1.00 (see section S3 in

the supplemental material). Consistent with this,

Hansen et al. (2005) estimated (transient) efficacy rel-

ative to historical ERF derived by regression as mar-

ginally above one.

Marvel et al. (2016) also derived a new efficacymetric,

called equilibrium efficacy, that accounts for variation in

heat uptake efficiency between forcings. However, their

methods also bias downward their historical forcing

equilibrium efficacy estimates. Recalculating equilib-

rium efficacy for historical ERF using the same mean

2000–05 historical ERF value as for our re-estimation of

transient efficacy, and the full TOA radiative imbalance

rather than just its ocean heat uptake component, raises

their 0.76 equilibrium efficacy estimate to 1.04 when the

comparison is made with the response to CO2-only

forcing over a similar time period (see section S3).

Hence we conclude that assertions that historical

forcing has an efficacy below one appear to be un-

justified, so that the assumption of l being independent

of forcing composition holds for the change in composite

forcing over the historical period (of which the volcanic

component is negligible).

d. Global incompleteness of the surface temperature
dataset

In principle a globally complete surface temperature

dataset is preferable, although the potential inaccuracy

introduced by infilling might be greater than estimated,

particularly in the early part of the record. Even during

the well-observed satellite period, it is not invariably

true that infilling is beneficial. ECMWF (2015) gives a

global-mean comparison over 1979–2014 of 2-m air

temperature for land and SST for ocean per ERA-

Interim (Dee et al. 2011)—generally considered the

best reanalysis dataset—both on a globally complete

basis and with monthly coverage reduced to match that

of HadCRUT4. The 1979–2014 linear trend of their

globally complete estimates was closely in line with that

based on HadCRUT4 coverage (which equaled the ac-

tual HadCRUT4v5 trend), whereas Had4_krig_v2

shows a 9% higher trend over that period.

Nevertheless, it is more appropriate to use sensitivity

estimates based on globally complete surface tempera-

ture data for comparisons with CMIP5 model ECS and

TCR values and others based on globally complete data.

We use only our Had4_krig_v2-based estimates for

doing so.

e. Use of anomaly temperatures and SST versus air
temperature over the oceans

Using CMIP5 model simulations, it has been claimed

(Cowtan et al. 2015; Richardson et al. 2016) that even a

globally complete surface temperature estimate like

Had4_krig_v2 may understate warming in global mean

near-surface air temperature due to its use of SST over

the ice-free ocean and of anomaly temperatures.

Richardson et al. (2016) estimated a historical bias of

7%–9% if real-world behavior matched that of the av-

erage CMIP5model. They refer to the related discussion

by Cowtan et al. (2015), who estimated an average bias

of 7% for historical warming (their Table S1, averaging

all periods with .0.2-K warming). Two causes each

contributed approximately half of the 7% bias.

First, Cowtan et al. (2015) argued that temperature

changes in areas becoming free of sea ice, as it shrinks,

are understated due to the use of anomalies. However,

CMIP5 model simulations cannot provide a realistic

estimate of any resulting bias in historical warming,

since most models simulate strong warming in Antarc-

tica and a reduction in surrounding sea ice, whereas little

Antarctic warming has occurred and sea ice there has

actually increased. Cowtan and Way (2014b) found that

in reality the effect on temperature estimates of as-

suming sea ice extent was fixed (in which case no bias

arises) was minimal.

Second, Cowtan et al. (2015) argued that in CMIP5

models SST (tos) warms less than ocean near-surface air

temperature (tas), resulting on average in surface tem-

perature warming less when SST rather than marine air

temperature is used. However, CMIP5 models generally

treat the ocean’s skin temperature, which determines its

interactions with the atmosphere, as equal to the top

model ocean layer, typically 10m deep, so that tas2 tos

really reflects the difference between model-simulated

air temperature and ocean skin temperature. Even if the

excess of near-surface air temperature increase over

ocean skin temperature increase in CMIP5 models is

realistic, SST, which is typically measured at 5–10m
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deep, is significantly different from skin temperature

and may increase faster. Observations provide alterna-

tive evidence. The Hadley Centre Night Marine Air

Temperature version 2 (HadNMAT2; Kent et al. 2013)

dataset shows a lower global trend in near-surface ma-

rine air temperature over its 1880–2010 record than does

the Hadley Centre SST version 3.1.1.0 (HadSST3.1.1.0)

dataset, the sea surface temperature component of

HadCRUT4v5, although possible inhomogeneities

mean this result is uncertain. Moreover, the 1979–2014

trend in the globally complete ERA-Interim data in-

creases by just 2% when using background 2-m marine

air temperature (calculated by the reanalysis AGCM)

rather than SST (ECMWF 2015).4 Over 1979–July

2016—a period in which the bulk of the historical period

warming and sea ice reduction occurred—ERA-Interim

shows marginally greater warming when using back-

ground marine air temperature rather than analyzed

SST, but the trend is 0.17K decade21 in both cases, and

lower than the 0.18K decade21 per both the SST-using

HadCRUT4v5 and Had4_krig_v2 datasets (Simmons

et al. 2017).

On balance the observational evidence points to past

warming in global mean temperature when using near-

surface air temperature everywhere being little different

from when blending it with SST over the ocean. The ev-

idence from comparing ERA-Interim trends using ma-

rine air temperature and using SST, which points to

approximately 2% slower warming when using SST, is

perhaps most credible. However, this excess is tiny, and

could be biased high by the reanalysisAGCM’s behavior.

We conclude that any underestimation of past global

near-surface air temperature warming arising from

blending SST data over the ice-free ocean with near-

surface air temperature elsewhere, as in Had4_krig_v2,

is sufficiently small to be ignored (and could even be

negative). While incorporating an extra multiplicative

uncertainty with a standard deviation of 4% in all the

Had4_krig_v2 DT values might nevertheless be justified,

it would not alter any ECS or TCR 5%–95%uncertainty

range by more than 60.01K.

f. ECS versus ECShist

The possibility that energy-budget climate sensitivity

estimates based on changes over the historical period,

which measure l over that period and assume it is in-

variant (and which thus actually reflect an effective cli-

mate sensitivity, ECShist), might differ from ECS was

brought up in section 2. In AOGCMs, ECShist can be

quantified fairly accurately, their ECS estimated from

centennial model response in abrupt4xCO2 simulations,

and an ECS-to-ECShist ratio derived.

We have calculated an ECS-to-ECShist ratio for an

ensemble of 31 CMIP5 models, deriving ECS by

Gregory-plot regression (Gregory et al. 2004) over years

21–150 (Armour 2017) and taking the mean ECShist
estimate from three methods that access different re-

alizations of model internal variability (see section S4

in the supplemental material). The three methods pro-

vide almost identical ensemble-mean ECShist estimates

(Table S2 in the supplemental material). Over the entire

ensemble, ECS varies between 0.91 and 1.52 times

ECShist, the median ratio being 1.095, very close to the

1.096 ratio estimated by Mauritsen and Pincus (2017).

Armour (2017) and Proistosescu and Huybers (2017)

reported higher ECS-to-ECShist ratios (respectively a

1.26 ensemble mean and 1.34 ensemble median), but we

find their estimation methods less satisfactory, causing

quantifiable biases.

A reconciliation of the mean ECS-to-ECShist ratio for

CMIP5 perArmour (2017, hereinafter A17) to our 1.095

ratio is as follows. We provide a similar reconciliation

for Proistosescu and Huybers (2017) in section S5 of the

supplemental material.

1) A17, in calculating ECShist values (therein termed

ECSinfer), estimated F23CO2
from the y-axis intercept

when regressing DN against DT over years 1–5 of

abrupt4xCO2 simulations. Doing so does not provide

an unbiased ERF basis estimate of F23CO2
, since

during year 1 the CO2 top-of-the-atmosphere forcing

is moving from its instantaneous value toward its

ERF value as the stratosphere, troposphere, and

other annual- or shorter-time scale climate system

components adjust to the imposed forcing indepen-

dently of surface temperature increase. For example,

stratospheric adjustment, which reduces forcing,

takes several months to complete. When regressing

over only five years, the inclusion of year-1 data

significantly increases the mean F23CO2
estimate,

resulting in lower ECShist estimates. We regress over

years 2–10, avoiding bias from not fully adjusted

year-1 data; time-variation of l is insignificant in the

first decade. A17’s ensemble-mean ECS-to-ECShist
ratio calculated using regression over years 2–10 to

4Digitizing the complete global averages data in the ECMWF

(2015) bar graph gives a 1979–2014 trend of 0.158K decade21, or

0.159K decade21 when masked to HadCRUT4 coverage. These

data are a blend of 2-m temperature over land and SST over ocean

(Paul Berrisford, ECMWF, 2016, personal communication). A 2%

higher 1979–2014 trend of 0.161K decade21 was computed using

data from https://climate.copernicus.eu/sites/default/files/repository/

Temp_maps/Data_for_month_8_2017_plot_3.txt. Those data are

for surface air temperature anomalies. Both sets of data have been

adjusted by ECMWF for inhomogeneities in their source of

analyzed SST.
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determine F23CO2
, but otherwise using his methods,

would be 1.215.

2) A17 did not allow for the slightly faster than loga-

rithmic relationship of CO2 forcing to concentration

(Etminan et al. 2016). There is no reason to think that

the CO2 radiative forcing code in CMIP5models does

not, on average, reflect that relationship; the logarith-

mic relationship given in AR5 was known only to be

an approximation. The effect is a 0.7% upward bias in

A17’s mean ECShist estimate (which is based on DN
and DT values in years 85–115 of 1pctCO2 simula-

tions) but a 4.6% upward bias in A17’s mean ECS

estimate (which is based on abrupt4xCO2 simula-

tions). Adjusting for this bias (3.9% net) reduces

A17’s ECS-to-ECShist ratio estimate further, to 1.170.

3) A17 estimate ECS using ordinary least squares

(OLS) regression of annual-mean years 21–150

abrupt4xCO2 DN and DT values, but DT as well as

DN is affected by internal variability and their

fluctuations are generally weakly correlated. Where

the regressor variable contains errors, OLS regres-

sion underestimates the slope coefficient (Deming

1985). Using Deming regression to derive unbiased

ECS estimates (see section S4 in the supplemental

material), A17’s ensemble-mean ECS estimate is

2.0% lower than when using OLS regression. Adjust-

ing for this bias further reduces A17’s ensemble-

mean ECS-to-ECShist ratio, to 1.146.

4) We use three different methods to estimate ECShist,

one being A17’s method, averaging their results. For

A17’s ensemble our mean ECShist estimate is the

same as when using only A17’s method, so using our

ECShist estimation basis its mean ECS-to-ECShist
ratio is also 1.146.

5) A17 quote a mean ECS-to-ECShist ratio, but since

the distribution is skewed it is appropriate to use the

median, a robust and parameterization-independent

measure, as the central estimate. The ensemble-

median A17 ECS-to-ECShist ratio, using our ECShist
calculation basis, is 1.115, lower than the 1.146 mean

ECS-to-ECShist ratio.

6) A17 use a smaller ensemble of CMIP5 models (21

rather than our 31), which disproportionately ex-

cludes models with low ECS-to-ECShist ratios. For

our ensemble, themedian ECS-to-ECShist ratio using

our calculation basis is 1.095.5

The ECS-to-ECShist ratio in CMIP5 models should vary

positively with ECShist (A17); it tends to do so and is

generally moderate (#1.16) where ECShist is under

2.9K, although a linear fit has little explanatory power.

We derive a probabilistic estimate for ECS that reflects

behavior of CMIP5 models by scaling our globally

complete Had4_krig_v2-based energy budget ECShist
estimate using CMIP5 model ECS-to-ECShist ratios,

binned (0.2-K width) by ECShist. We allocate the million

sample observationally based ECShist estimates between

the bins and scale them by the ECS-to-ECShist ratios of

models in each bin, taking models from the nearest

bin(s) where the ECShist bin is empty and allocating

samples falling in each bin equally between the appli-

cable models. The resulting ECS median estimate is

1.76K (5%–95% range: 1.2–3.1K). Scaling the median

of our energy budget ECShist estimate by the 1.06 me-

dian ECS-to-ECShist ratio for the 14 CMIP5models with

an ECShist value within its 1.15–2.7-K uncertainty range

likewise produces a 1.76-KmedianECS estimate.A 3.1-K

95% uncertainty bound for ECS also results if the million

sample Had4_krig_v2-based ECShist estimates are scaled

using the CMIP5 ensemble-median ECS-to-ECShist ratio

of 1.095 with normally distributed uncertainty added to

give a 5%–95% range of 0.79–1.40.

The upper bound generated for ECS is not necessarily

robust; the joint distribution of ECS and ECShist in

CMIP5models may not be a realistic enoughmeasure of

uncertainty in the ECS-to-ECShist ratio, nor is it known

how accurately ECS can be estimated from 150-yr

abrupt4xCO2 simulations. If the 95% uncertainty

bound for ECShist estimated using Had4_krig_v2 data

(2.7K) were scaled up by the highest ECS-to-ECShist
ratio among CMIP5 models with an ECShist below

2.85K, the ECS upper bound would be 3.4K. However,

much of any excess of ECS over ECShist would take

centuries to be realized in surface warming, with little

effect on warming in 2100. Twenty-first-century warm-

ing arising from future forcing increases will largely be

determined by TCR, with any excess of ECS over

ECShist being almost irrelevant. Even if the highest

ECS-to-ECShist ratio found in CMIP5 models applied,

warming in 2100 due to the past increase in forcing

would be only 0.1K greater than if ECS equaled ECShist
(Mauritsen and Pincus 2017).

Observationally based evidence of the ECS–ECShist
relationship can be obtained by comparing historical-

period energy budget sensitivity estimates with those

based on past changes between equilibrium climate

states (implying zero DN), using proxy paleoclimate

data. However, uncertainties in forcing and temperature

changes are considerably greater for past periods, par-

ticularly for more remote periods, and climate feed-

backs might have been considerably different then. The

most recent and best studied such change is that from

5 If our ensemble were equally weighted by modeling center, the

median ECS-to-ECShist ratio would be 1.082.
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the Last Glacial Maximum (LGM) to the preindustrial

Holocene. It is not obvious that ECS for the LGM

transition should be lower than from preindustrial con-

ditions, and an energy budget approach has long been

applied to estimate ECS from this period. Although

Goelzer et al. (2011) found that the LGM-transition

ECS could be reduced by melting ice sheets, the effect

was minimal when estimated ECS was below 2.5K.

Reasonably thoroughproxy-based estimates of changes in

surface temperature [4.0K inAnnan andHargreaves (2013)

and 5.0K in Friedrich et al. (2016)] and forcings (total

9.5Wm22; Köhler et al. 2010) are available for the LGM

transition. These values imply, using (4), an ECS estimate of

1.76K, (averaging the two surface temperature increase es-

timates and taking F23CO2
per AR5, since the WMGG

forcings were derived using AR5 formulas), in line with the

median obtained by scaling this study’s ECShist estimate.

8. Conclusions

Using updated and revised data, we have derived

ECShist and TCR estimates that are much better con-

strained, and slightly lower when using the same surface

temperature dataset (HadCRUT4), than those in the

predecessor LC15 study: 1.50-K median (5%–95%

range: 1.05–2.45K) for ECShist and 1.20-K median (5%–

95% range: 0.9–1.7K) for TCR. Using infilled, globally

complete temperature data (Had4_krig_v 2) slightly

increases the new estimates, to a median of 1.66K for

ECShist (5%–95% range: 1.15–2.7K) and 1.33K for

TCR (5%–95% range: 1.0–1.9K). We have also shown

that various concerns that have been raised about the

accuracy of historical period energy budget climate

sensitivity estimation are misplaced. We assess nil bias

from either non–unit forcing efficacy or varying SST

warming patterns, and that any downward estimation

bias when using blended infilled surface temperature

data is trivial. We find that high CMIP5 model-based

estimates of the ratio of ECS to ECShist, the proxy for

ECS that historical period based studies estimate,

become far lower when calculated more appropriately.

By using the ECS-to-ECShist ratios that we calculate for

CMIP5models to scale our Had4_krig_v2-based ECShist
probability distribution, we derive amedian estimate for

ECS of 1.76K (5%–95% range: 1.2–3.1K).

Relative to LC15, most of the improvement in ECS

estimation precision is due to higher greenhouse gas

concentrations when using data to 2016 rather than 2011

and to the revisions to estimated CH4 and post-1990

aerosol forcing. Forcing uncertainty remains the domi-

nant contributor to the widths of the ECS and TCR

ranges, and reducing the uncertainty in aerosol forcing

would narrow them much more than reducing un-

certainty in any other forcing component.

It is notable that the best estimates for both ECS and

TCR are almost identical across all four combinations of

base period and final period. This is consistent with a

modest influence of shorter-term climate system internal

variability and of measurement and/or estimation error

on energy budget sensitivity estimates. The estimates

using the 1869–82 base period and 2007–16 final period

combination are preferred; they have the highest DT and

DF values and as a result are best constrained. Moreover,

with the Argo ocean-observing network fully operational

throughout 2007–16, there is also higher confidence in the

reliability of the ocean heat uptake estimate when using

that final period. Although HadCRUT4 observational

coverage wasmodest during 1869–82, the fact that TCR

estimation is very similar using the higher-coverage

1930–50 base period gives confidence in the ECS and

TCR estimates using the former base period.

Over half of 31 CMIP5 models have best-estimate

ECShist values of 2.9K or higher, exceeding by over 7%

our 2.7-K observationally based 95% uncertainty bound

using infilled temperature data. Moreover, a majority of

the models have best-estimate TCR values above our

corresponding 1.9-K 95% bound. A majority of the

models also have best-estimate ECS values above our

3.1-K 95% bound. A simplified analysis (Table 5) based

on considering in turn uncertainty only in DT,

TABLE 5. Simplified, one-at-a-time analysis of data values implied by statistically inconsistent CMIP5models. The first two rows of data

show the values of each of DT, DF/F23CO2
, and DN/F23CO2

implied by the stated ECShist and TCR values, if the remaining two of those

variables each took its median value. Those ECShist and TCR values are, for each parameter, the lowest for any CMIP5 model in the

ensemble that is above the 95% uncertainty bounds given by the preferred (from 1859–82 to 2007–16) estimates from the main analysis

using the globally complete Had4_krig_v2 dataset. The bottom row shows the observationally derived uncertainty ranges for the three

variables. Best estimates and uncertainty ranges are derived from the same one million samples used for the main statistical analysis.

Implied value of each variable if the other two each equal their median value DT (K) DF/F23CO2
DN/F23CO2

Parameter and lowest inconsistent value in CMIP5 model ensemble

ECShist: 2.89K 1.54 0.43 0.36

TCR: 1.91K 1.26 0.46 —

Observational 5%–95% range 0.73–1.03 0.49–0.83 0.06–0.21
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DF/F23CO2
, and DN/F23CO2 (thus taking into account

uncertainty in F23CO2
) confirms that in each case the

lowest CMIP5 model TCR and ECShist values that we

find to be inconsistent with observed warming imply,

implausibly, that DT, DF/F23CO2
, and DN/F23CO2 have

values outside their uncertainty ranges.

The implications of our results are that high best esti-

mates of ECShist, ECS, and TCR derived from a majority

of CMIP5 climate models are inconsistent with observed

warming during the historical period (confidence level

95%). Moreover, our median ECS and TCR estimates

using infilled temperature data imply multicentennial or

multidecadal future warming under increasing forcing

of only 55%–70% of the mean warming simulated by

CMIP5 models.
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